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Abstract. It is shown that if a system of coupled differential equations satisfies the Louville
condition it is not necessarily constructed according to the Nambu prescripton. The relation of
the number of time-independent integrals of the system to the required number of Hamiltonians
is explored. The extended version of Nambu mechanics that admits singlets is related to the
generalized Hamiltonian version of dynamics. All features are explored within one specific
example in three-dimensional phase space.

1. Introduction

In the Nambu version of dynamics [1] the phase space is spanned by the dynamical variables
xi , i = 1, . . . , n (n even or odd); this is called ann-dimensional multiplet. The particular
form of the time evolution equations for these variables implies that the Liouville condition,
∂[dxi/dt ]/∂xi = 0, is identically satisfied. In fact, the Nambu prescription requires that
(n − 1) functions of the dynamical variablesH1, . . . , Hn−1—called the Hamiltonians of the
system—be given; then the evolution equation for any functionA = A(x1, . . . , xn) is

dA/dt = ∂(A, H1, . . . , Hn−1)/∂(x1, . . . , xn) (1)

where∂(. . .)/∂(. . .) is a Jacobian; takingA = xi in (1), differentiating partially with respect
to xi and summing overi leads to the Liouville condition. A direct consequence of (1) is
that dHi/dt = 0, i = 1, . . . , n − 1.

In this paper the inverse problem is studied, using one particular example: given
a system of coupled ordinary differential equations of the form dxi/dt = Fi such that
the functionsFi satisfy ∂Fi/∂xi = 0 it is required to find under what conditions there
exist (n − 1) functionsH1, . . . , Hn−1 that are time-independent so that the given system is
generated according to (1). The main result is that only for certain values of the parameters
that define the example is this possible. Although three-dimensional phase space is used
most of the conclusions are valid for any dimensionn.

The conclusion reached does not agree with previous ones which assert that, the Liouville
condition is ‘. . . sufficientas well as necessary. . . ’ (see [2]) to have (1) and that the use of
n integrals—one of which is explicitly time-dependent (see [3])—also leads to (1). It turns
out that in the specific illustrations considered in [3] the conclusion is true but this is not
so in the general case. The system dxi/dt = Fi(x1, . . . , xn) admits possibilities that do not
coincide with (1); among them:
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(i) the separation of the dynamical variables into a singlet coupled to an (n − 1)-
dimensional multiplet (see [4] for a discussion of the specific casen = 4);

(ii) the system is Hamiltonian in the generalized sense of [5–7];
(iii) if n is not prime then the dynamical variables can be grouped into a number of

multiplets all of the same dimension (see [8])—this case is, however, closely related to the
Nambu prescription in the sense that the evolution equation for a dynamical variable is a
sum of Jacobians instead of a single Jacobian as in (1) and that ifn = ms there are (s − 1)
Hamiltonians (which are, of course, functions of all the variables that span phase space)
when there arem multiplets;

(iv) it does not admit one of the possibilities (i)–(iii); this subfamily will be called
non-Hamiltonian.

In the particular example considered in this paper it is found:
(i) that the system is Hamiltonian if it corresponds to a Nambu multiplet—this is

Ruggeri’s result [9];
(ii) that the triplet and the singlet coupled to a doublet are unconnected; and
(iii) that the singlet coupled to a doublet is not Hamiltonian.

Notation and conventions.x ′
i = dxi/dt , Di = ∂/∂xi, di = ∂/∂yi , Dt = ∂/∂t , x =

(xi, . . . , xn), eijk is the Levi-Civita tensor and the summation convention is used throughout.
Boldface letters denote vectors.

2. General remarks on dynamical systems

The dynamical system considered has the form

dxi/dt = Fi(x) i = 1, . . . , n (2)

where theFi are given functions of the dynamical variables such that DiFi = 0. The
main purpose of this paper is to investigate under what conditions the right-hand side
of system (2) can be generated following the prescription specified in (1). Since in (1)
knowledge of the Hamiltonians is crucial and these functions are integral invariants of the
system (1) special attention is paid to the integral invariants of system (2). Once the set
of integral invariants is known it is also known how many of them—or functions of them
(which are also invariants)—do not explicitly involve the time. If this number is(n − 1)

then the system (2) may be cast in the form (1)—see remark 2.1.
The integral invariants of system (2) satisfy

Ri(x, t) = Ci i = 1, . . . , n (3)

where theCi ’s are constants. The set of invariants (3) is also called the integral inequivalent
of (2).

Remark 2.1. The particular case of the Nambu mechanics has the first(n − 1) R’s
time-independent—they correspond to the Hamiltonians—andRn explicitly time-dependent.
Moreover, it is required thatRn be a monotonic function of time. To see this recall that
Cohen’s procedure [3] requires knowledge of(n − 1) time-independent integral invariants
and a time-dependent one; from them the components of the velocity are computed. The
result is that thex ′

i have, as a factor, the time derivative of the last integral invariant. If
this factor vanishes for a particular value of time, an equilibrium point is generated which
always belongs to the solution; the solution reduces, then, to this point.
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The set of integrals (3) gives rise to (2) in the following sense: the solution obtained
from (2) and the functionsxi(t) extracted from (3) are the same or equivalently, the dxi/dt ’s
obtained from (3) are the same as the ones exhibited in (2). This gives sense to the assertion
that (3) is the integral equivalent of (2). Any of the integrals (3) satisfies identically dRi = 0
after use of the set (2). If the starting point is (3) then the equation satisfied by eachRi is
[10]

UsDsRi + DtRi = 0 i = 1, . . . , n (4)

where theUs are given by

∂(R1, . . . , Rn)/∂(x1, . . . , xn)U
s = −∂(R1, . . . , Rn)/∂(x1, . . . , xs−1, t, xs+1, . . . , xn). (5)

Remark 2.2. It is easy to see that ifR1, . . . , Rn−1 are time-independent thenUs = x ′
s after

introducing a new time variable as in [3] and the conditions of remark 2.1 are satisfied.

To conclude with these very general remarks it is important to say that all functionsRi

are functionally independent so that none of the relations (3) can be obtained as combinations
of the others; if this was the case some of the relations in (3) could be dismissed leaving
less thann in number; this implies that more than one independent variable appears. The
case considered in this paper corresponds to the so-called completely integrable one (for
further details see [10]).

As already stated, to approach the problem of generating system (2) according to (1)
it is important to determine the minimum number of time-dependent integrals associated
to (2). To this end attention is paid to the set of ordinary differential equations equivalent
to dRi = 0

F−1
1 dx1 = F−1

2 dx2 = · · · = F−1
n dxn = dt. (6)

If the solution to the subsystem of differential equations that does not involve dt consists of
(n−1) functionally independent functions then only one time-dependent integral will appear
and the system will be generated according to the Nambu prescription if the monotonicity
condition is satisfied (see remark 2.1). But if this number is less than(n−1), sayk, then the
system has(n−k) time-dependent integrals; there is still the possibility that enough functions
can be constructed from these time-dependent integrals that do not involve explicitly the
time so as to have(n − 1) in all, the system may be of the Nambu type. Otherwise it will
be not. These features have to be explored in each particular case. The study of the Nambu
mechanics starts from knowledge of the(n− 1) Hamiltonians—as given input—required to
generate the equations of motion according to (1). The point of view adopted in this paper is
that the primary information is (2) and the number of Hamiltonians—if they exist—should
be an outcome of the study of this system.

Remark 2.3. It is well known that for a system of first-order differential equations such
as (2) a Jacobi multiplier always exists so that it can be cast in the form (1)—this is in fact
the role of the Jacobi multiplier—with integrals—that replace the Hamiltonians—which are,
in general, functions of(x, t) see ([10, 11]). The requirement that(n − 1) of the integrals
do not involve the time restricts the possible systems allowed in a particular situation; it
is this extra condition that impedes stating that the Liouville condition is equivalent to the
Nambu form of dynamics and invalidates some of the conclusions in [2].

Before proceeding the definitions of a singlet coupled to a doublet and of generalized
Hamiltonian dynamics are briefly summarized. In three-dimensional phase space the
system (2) is a singlet coupled to a doublet [4] if there is a functionH that generates it



1040 S Codriansky et al

according tox ′
1 = D2H , x ′

2 = −D1H , x ′
3 = D3H . It follows thatH satisfiesH ′ = (D3H)2

and if the Liouville condition is imposed the result is D2
3H = 0; the functionH is,

therefore, not a constant of the motion and must be, at most, linear inx3. The system (2)
is Hamiltonian in the generalized sense ([5–7]) if it is generated from an antisymmetric
matrix K that satisfies the Jacobi identity—see (34) below—and a functionG according to
x ′

i = Kij DjG which implies thatG is an integral invariant. The Liouville condition leads
to (DiKij )DjG = 0; this relation is identically satisfied ifK is a constant matrix, otherwise
it restrictsK and/or the Hamiltonian functionG.

From now on the particular casen = 3 will be considered. There are three independent
integral invariants for the system (2) for which three maximal situations can be envisaged:
the set of three integral invariants has either one time-dependent and two time-independent
or two time-dependent and one time-independent or three time-dependent functions. A
maximal situation will be defined as one for which the set of integrals (3) has the maximum
number of time-independent functions in a preferred set of variables. Now the possibilities
are clear: if two time-independent functions exist, provided the time-dependent integral is
monotonic in time, the system will be related to the Nambu mechanics and the Hamiltonians
will be functions of the time-independent integrals; this is Cohen’s result [3]—it has to be
noted that, in this case, the system is also Hamiltonian in the generalized sense. If there is
only one time-independent integral, the system could be Hamiltonian if it can be generated
from this integral or by an appropriate function of it according to the prescription of [5–
7]. If there is an explicitly time-independent function which is, however, not constant in
time but which generates the system according to [4] then it represents a singlet coupled
to a doublet; all other cases are non-Hamiltonian. From what has been said it is clear
that satisfaction of the Liouville condition does not guarantee that the system of differential
equations will be constructed according to the Nambu prescription.

3. A specific example

The features that have been described in the previous section will be illustrated considering
a simple case. The example is defined by the third-order equation

x ′′′ = F(x, x ′, x ′′). (7)

Remark 3.1. (7) includes the equation for a charged particle moving under the action of
a Newtonian and the classical radiation force [12, 13]. A particular case ofF(x, x ′, x ′′) is
Weber’s version of electrodynamics [12–15].

Defining x1 = x, x2 = x ′ andx3 = x ′′ (7) takes the form

x ′
1 = x2 x ′

2 = x3 x ′
3 = F(x1, x2, x3). (8)

Imposing now the Liouville condition it is found that the functionF(x1, x2, x3) must depend
on x1 andx2 only (i.e. it is a function of position and velocity). For purposes of illustration
F(x1, x2, x3) will be taken as a linear function:F(x1, x2, x3) = ax1 + bx2, with a and b

constants.
The integralsT of

x ′
1 = x2 x ′

2 = x3 x ′
3 = ax1 + bx2 (9)

are defined by

x ′
iDiT + Dt T = 0 (10)

with equivalent ordinary differential equations

x−1
2 dx1 = x−1

3 dx2 = (ax1 + bx2)
−1dx3 = dt. (11)
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The solution of (11) is easily found: constantsr, s1, s2 ands3 exist such that

(s1 dx1 + s2 dx2 + s3 dx3)/(s1x2 + s2x3 + s3[ax1 + bx2]) = dt

= (s1 dx1 + s2 dx2 + s3 dx3)/[r(s1x1 + s2x2 + s3x3)] (12)

this leads to the system

rs1 = s3a rs2 = s1 + s3b rs3 = s2 (13)

which has a non-trivial solution fors1, s2 ands3 if r satisfies

r3 − br − a = 0. (13a)

Once the roots have been computed, there are three sets of values(s1, s2, s3) and
from (11) the integral invariants are

Li(x1, x2, x3) = Pi(t) exp(ri t) i = 1, 2, 3 (14)

where for eachi a different set(s1, s2, s3) has to be taken andPi(t) is, at most, a first-order
polynomial. If there are three different values forr then thePi ’s are constant and from (14)
there are two time-independent integrals

L
1/r1
1 (x1, x2, x3) = L

1/r2
2 (x1, x2, x3) (15)

L
1/r2
2 (x1, x2, x3) = L

1/r3
3 (x1, x2, x3) (16)

and the third integral invariant is explicitly time-dependent—it can be taken as any of the
equations (14). In this case the time dependence is monotonic and, according to Cohen’s
procedure [3], the system can be brought into the Nambu standard form. When there is a
double root a single integral invariant that is time-independent can be constructed; this is
due to the fact that in (14)r2 = r3 (say) and then the right-hand side fori = 3 is of the
form t exp(r2t) whose time derivative vanishes fort = −1/r2. In this case any attempt to
use Cohen’s procedure obviously fails first because the function is not monotonic in time
and second because there is only one integral invariant that is time-independent. The case
of three equal roots is trivial since this requiresa = b = 0.

Remark 3.2. In [16] the motion of a radiating charged particle in an external electric field
was considered. The explicit form of the set of three equations is different from the ones
presented here. The Liouville condition is not fulfilled; the main aim in [16] is to cast the
system in generalized Hamiltonian form (see also [9]).

3.1. A Nambu triplet

Up to this stage it has been shown that a system of coupled ordinary differential equations
that satisfies the Liouville condition does not have two time-independent integral invariants
in general. The results obtained depend on the discriminant of (13a) but this in turn reflects
on the particular values of the parametersa andb. DefineB = (a/2)2 − (b/3)3 then the
case of interest corresponds toB < 0. The roots of the cubic equation are all real and the
two integral invariants are given by (15) and (16) with

Li = ui [ax1/ri + rix2 + x3] i = 1, 2, 3. (17)

It is now an easy matter to see that only fora = 0 do the relations (15) and (16) generate—
according to the Nambu prescription—the system (9). The explicit form of the Hamiltonian
is

H1 = x1 − x3/b 2H2 = bx2
2 − x2

3. (18)



1042 S Codriansky et al

Proof. Write H1 as a linear andH2 as a quadratic function ofx, then replace in (1) and
require that after equating with (9) the result be identically satisfied. This leads to a set of
nine equations that are consistent only ifa = 0. The expressions forH1 andH2 are given
in (18). �

Alternative proof. Consider the two time-independent integral invariants as in (15)
and (16); define the two Hamiltonians as any function of these combinations ofL’s. Use
them in the Nambu prescription so as to reproduce (9). The results involve the functions
L1 in such a way that to recover a linear function one of the roots of the cubic equation
must vanish; this leads to a linear and a quadratic Hamiltonian. A zero root meansa = 0.

Remark 3.3. If two of the roots satisfyr2 = r∗
3 then in (14) the invariants fori = 2 and 3

are replaced by their real and imaginary parts; with these functions and the one fori = 1
only one function not involving the time can be constructed.

3.2. A singlet and a doublet

In this case it is necessary to construct a single functionH which does not depend explicitly
on time but which is also not a constant of the motion. The integral invariants already
constructed are of no use in this case. The equations definingH are

x ′
1 = D2H = x2 x ′

2 = −D1H = x3 x ′
3 = D3H = ax1 + bx2 (19)

which has a solution only fora = −1, b = 0 given by
H = x2

2/2 − x1x3. (20)
This result shows that the triplet and singlet are clearly separated by the numerical values
of the constants. There is, however, the possibility that (9) witha = 0 can be transformed
into

y ′
1 = y2 y ′

2 = y3 y ′
3 = −y1 (21)

which is (9) witha = −1, b = 0. Write both systems as

x′ =
( 0 1 0

0 0 1
0 b 0

)
x = Mx (22)

y′ =
( 0 1 0

0 0 1
−1 0 0

)
y = Ny (23)

and define the transformationsx = f(y), y = g(x) which are assumed to be one inverse
of the other. Define [i, j ] = dj fi evaluated aty = g(x); then the following relations are
obtained

x ′
i = dj fiy

′
j = dj fiNjkyk = Mijxj (24)

using the explicit forms ofM andN andyk = gk(x) it follows that
x2 = [1, 1]g2 + [1, 2]g3 − [1, 3]g1 (25)

x3 = [2, 1]g2 + [2, 2]g3 − [2, 3]g1 (26)

bx2 = [3, 1]g2 + [3, 2]g3 − [3, 3]g1 (27)
from (25) and (27)g1 can be expressed as function ofg2 andg3 after using the functional
independence of thefi ’s. This result implies that thegj ’s are not functionally independent
which violates the initial assumption. Therefore the two systems cannot be transformed into
one another.

Remark 3.4. The result just found is not general. A non-Nambu system can, in particular
cases, be connected to a Nambu system; see [17] for an example.
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3.3. A Hamiltonian system

In this case the system (9) should be generated from a single Hamiltonian functionG(x)

according to

x ′
j = KjnDnG (28)

whereK is an antisymmetric matrix that satisfies the Jacobi identity. A HamiltonianG(x)

quadratic in the coordinates will be assumed, in this caseK is a matrix with constant entries
so that the Jacobi identity is trivial; write

2G(x) = zij xixj (29)

where thezij are elements of a symmetric matrixZ; using (28) leads to the equations

x ′
j = (KZ)jnxn (30)

which, after use of (9) and requiring that these equations be satisfied identically, imply nine
equations for the nine unknown quantities (z11, z12, z13, z22, z23, z33; K12, K13, K23). It is
found that these equations are consistent only ifa = 0, that is, in the case of a Nambu triplet.
This is Ruggeri’s result on the formulation of Nambu mechanics as a singular generalized
Hamiltonian mechanics [9]. The same result is obtained if the Hamiltonian is chosen as a
linear function with the matrix elements ofK linear in the coordinates.

In the general case the equations that have to be solved are

x ′
1 = K12D2G + K13D3G = x2 (31)

x ′
2 = −K12D1G + K23D3G = x3 (32)

x ′
3 = −K13D1G − K23D2G = ax1 + bx2 (33)

and the Jacobi identity

KrsDsKtu + KtsDsKur + KusDsKrt = 0 (34)

where both G(x) and the matrixK(x) have to be determined. Define the vector
h = (K23, −K13, K12), then the Jacobi identity reduces to

h · curlh = 0 (35)

whose general solution ish = f gradg with f and g arbitrary functions. Replacing this
result in (28) leads, after use ofKij = eijkhk, to

x ′
i = f eijkDkgDjG (36)

which reduces to (1) iff = 1 or, if f does not vanish, after a change to a new time
parameterw such that Dtw = f . Other cases lead to systems that are different from a
Nambu triplet but that are Hamiltonian in the generalized sense. If the Liouville condition
is used in (36) it follows

eijkDif Dj gDkG = 0 (37)

which includes more cases than in the Nambu mechanics. As a result the generalized
Hamiltonian dynamical scheme is wider than the Nambu one; what is not clear is the
relation between the usual Hamiltonian scheme and the Nambu scheme; a partial answer to
this question has been given in [18].

It is easy to show that in this example the system is Hamiltonian in the generalized
sense. In fact, write the HamiltonianH as (q1 andq2 constants)

2H = q1x
2
1 + 2q1x1x3 + q2x

2
2 + (q1 + q2)x

2
3 (38)

and the matrix elements ofK asK12 = K23 = 1/q2, K13 = 0.
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4. Conclusions

It has been shown that if the Liouville condition is satisfied then the system of coupled
differential equations is not necessarily derived from the Nambu prescription. A specific
example—see (9)—has been used to illustrate the main results; this example turned out to
be sufficiently simple and at the same time rich enough to exhibit, to a large extent, the main
properties. It has been found that ifa 6= 0 then the system is not Nambu; ifa = 0 andb

arbitrary the system is Nambu while ifb = 0 anda = −1 the system is a singlet coupled to
a doublet. The system is Hamiltonian in the generalized sense in a wide variety of situations
which include the triplet; the cases in which the Hamiltonian case is not equivalent to a
triplet have been explicitly exhibited. Of course there is a range of values of the parameters
that do not fall into any of the above categories so that there is still enough room for other
possibilities not considered here. What is important is that the role played by the Liouville
condition in relation to the Nambu prescription has been clarified and the main moral is
that any specific case has to be studied individually.
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